Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (11): 2099-2110.doi: 10.11947/j. AGCS.2024.20240249.
• Geodesy and Navigation • Previous Articles
Lingqiu CHEN1,2(), Hongzhou CHAI1(), Jingyang BAO3, Min WANG1,2, Naiquan ZHENG4
Received:
2024-06-19
Published:
2024-12-13
Contact:
Hongzhou CHAI
E-mail:clqseu@126.com;chaihz1969@163.com
About author:
CHEN Lingqiu (1988—), female, PhD candidate, lecturer, majors in GNSS remote sensing. E-mail: clqseu@126.com
Supported by:
CLC Number:
Lingqiu CHEN, Hongzhou CHAI, Jingyang BAO, Min WANG, Naiquan ZHENG. Sea surface height inversion based on inverse modeling of multi-GNSS and multi-frequency SNR data[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2099-2110.
Tab.2
GNSS signal frequencies and SNR types of MAYG and BRST"
GNSS | 信号频率 | SNR类型 | ||
---|---|---|---|---|
BRST | MAYG | SC02 | ||
L1:1 575.42 MHZ | S1C | S1C | S1 | |
GPS | L2:1 227.60 MHZ | S2X | S2X | S2 |
L5:1 176.45 MHZ | S5X | S5X | S5 | |
GLON-ASS | G1:1602+K×9/16 MHZ | S1C,S1P | S1C,S1P | S1 |
G2:1246+K×7/16 MHZ | S2C,S2P | S2C,S2P | S2 | |
E1:1 575.42 MHZ | S1X | S1X | S1 | |
E5a:1 176.45 MHZ | S5X | S5X | S5 | |
Galileo | E5b:1 207.140 MHZ | S7X | S7X | S7 |
E5(E5a+E5b):1 191.795 MHZ | S8X | S8X | S8 | |
E6:1 278.75 MHZ | S6X | — | — | |
B1:1 561.098 MHZ | S2I | S2I | — | |
B3:1 268.52 MHZ | S6I | S6I | — | |
BeiDou | B2:1 207.140 MHZ | S7I | S7I | — |
B1C:1 575.42 MHZ(BDS-3) | S1X | S1X | — | |
B2a:1 176.45 MHZ(BDS-3) | S5X | S5X | — |
Tab.3
Performance evaluation of inverse modeling for multi-GNSS and multi-frequency SNR data at MAYG"
GNSS | 频率 | SNR类型 | 滑动窗口SNR弧段数 | RMSE/cm | 相关系数 |
---|---|---|---|---|---|
GPS | L1 | GPS-S1C | 2 | 48.30 | 0.843 75 |
L1,L2 | GPS-S1C;GPS-S2X | 10 | 7.90 | 0.995 26 | |
L1,L2,L5 | GPS-S1C;GPS-S2X;GPS-S5X | 14 | 6.87 | 0.996 74 | |
GLO GPS GLO GAL GPS | L1 | GPS-S1C;GLO-S1C;GLO-S1P | 7 | 20.18 | 0.968 56 |
L1 | GPS-S1C;GLO-S1C;GLO-S1P;GAL-S1X | 9 | 14.63 | 0.982 97 | |
GPS GLO GAL BDS | L1 | GPS-S1C;GLO-S1C;GLO-S1P;GA L-S1X;BDS-S2I | 14 | 9.41 | 0.992 95 |
GPS-S1C;GPS-S2X;GLO-S1C;GLO-S1P;GLO-S2C | ; | ||||
L1,L2 | GLO-S2P;GA L-S1X;GAL-S7X;BDS-S1X;BDS-S2I; | 45 | 3.53 | 0.999 14 | |
BDS-S6I;BDS-S7I; | |||||
L1,L2,L5 | 全部 | 63 | 3.59 | 0.999 19 |
Tab.5
Tidal amplitude and phase lag of individual tidal constituents for directly measursed sea surface height and inverted sea surface height at MAYG"
分潮名称 | 振幅/cm | 迟角/(°) | ||||
---|---|---|---|---|---|---|
实测 | 反演 | 差值 | 实测 | 反演 | 差值 | |
M2 | 104.140 | 101.321 | 2.819 | 26.340 | 27.712 | -1.372 |
S2 | 53.158 | 51.651 | 1.507 | 65.869 | 67.282 | -1.413 |
N2 | 18.720 | 18.548 | 0.172 | 6.941 | 9.068 | -2.127 |
K1 | 14.137 | 12.903 | 1.234 | 4.217 | 6.181 | -1.964 |
K2 | 14.130 | 14.036 | 0.094 | 61.530 | 63.575 | -2.045 |
O1 | 8.953 | 8.177 | 0.776 | 6.960 | 5.983 | 0.977 |
NU2 | 4.172 | 3.900 | 0.272 | 5.612 | 6.449 | -0.837 |
P1 | 4.103 | 3.844 | 0.259 | 5.442 | 359.752 | 5.690 |
Tab.6
Tidal amplitude and phase lag of individual tidal constituents for directly measursed sea surface height and inverted sea surface height at BRST"
分潮名称 | 振幅/cm | 迟角/(°) | ||||
---|---|---|---|---|---|---|
实测 | 反演 | 差值 | 实测 | 反演 | 差值 | |
M2 | 204.800 | 202.198 | 2.602 | 105.745 | 108.121 | -2.376 |
S2 | 75.207 | 74.373 | 0.834 | 145.625 | 148.074 | -2.449 |
N2 | 41.406 | 40.674 | 0.732 | 87.886 | 89.718 | -1.832 |
K2 | 21.641 | 21.180 | 0.461 | 142.788 | 145.508 | -2.720 |
MU2 | 8.700 | 7.881 | 0.819 | 101.937 | 105.252 | -3.315 |
2N2 | 8.092 | 7.220 | 0.872 | 77.744 | 79.905 | -2.161 |
NU2 | 7.735 | 7.136 | 0.599 | 83.953 | 86.322 | -2.369 |
SSA | 7.434 | 6.841 | 0.593 | 83.262 | 84.007 | -0.745 |
L2 | 6.755 | 6.428 | 0.327 | 112.853 | 119.561 | -6.708 |
K1 | 6.563 | 6.826 | -0.263 | 73.204 | 74.202 | -0.998 |
O1 | 6.466 | 6.558 | -0.092 | 327.962 | 328.277 | -0.315 |
M4 | 5.842 | 4.509 | 1.333 | 99.788 | 106.965 | -7.177 |
Tab.7
Tidal amplitude and phase lag of individual tidal constituents for directly measursed sea surface height and inverted sea surface height at SC02"
分潮名称 | 振幅/cm | 迟角/(°) | ||||
---|---|---|---|---|---|---|
实测 | 反演 | 差值 | 实测 | 反演 | 差值 | |
K1 | 75.622 | 74.272 | 1.350 | 279.796 | 279.176 | 0.620 |
M2 | 55.797 | 55.408 | 0.389 | 10.178 | 10.260 | -0.082 |
O1 | 42.672 | 42.275 | 0.398 | 258.082 | 258.272 | -0.190 |
P1 | 24.121 | 23.789 | 0.332 | 279.097 | 279.126 | -0.029 |
S2 | 13.365 | 13.133 | 0.232 | 34.911 | 34.183 | 0.729 |
N2 | 11.968 | 12.019 | -0.051 | 343.233 | 343.324 | -0.091 |
Q1 | 7.265 | 7.199 | 0.066 | 251.248 | 251.345 | -0.098 |
[1] |
周兴华, 付延光, 许军. 海洋垂直基准研究进展与展望[J]. 测绘学报, 2017, 46(10): 1770-1777. DOI:.
doi: 10.11947/j.AGCS.2017.20170322 |
ZHOU Xinghua, FU Yanguang, XU Jun. Progress and prospects in developing marine vertical datum[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1770-1777. DOI:.
doi: 10.11947/j.AGCS.2017.20170322 |
|
[2] | XU Jun, BAO Jingyang, ZHANG Chuanyin, et al. Tide model CST1 of China and its application for the water level reducer of bathymetric data[J]. Marine Geodesy, 2017, 40(2/3): 74-86. |
[3] |
暴景阳, 许军, 于彩霞. 海洋空间信息基准技术进展与发展方向[J]. 测绘学报, 2017, 46(10): 1778-1785. DOI:.
doi: 10.11947/j.AGCS.2017.20170371 |
BAO Jingyang, XU Jun, YU Caixia. Technical progress and development directions of oceanic spatial information datum[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1778-1785. DOI:.
doi: 10.11947/j.AGCS.2017.20170371 |
|
[4] |
徐天河, 穆大鹏, 闫昊明, 等. 近20年海平面变化成因研究进展及挑战[J]. 测绘学报, 2022, 51(7): 1294-1305. DOI:.
doi: 10.11947/j.AGCS.2022.20220091 |
XU Tianhe, MU Dapeng, YAN Haoming, et al. The causes of contemporary sea level rise over recent two decades: progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1294-1305. DOI:.
doi: 10.11947/j.AGCS.2022.20220091 |
|
[5] | LI Jie, FU Yanguang, TANG Qiuhua, et al. Accuracy assessment of a seamless depth datum model established on the basis of the global ocean tide model[J]. Journal of Coastal Research, 2020, 99(S1): 74. |
[6] | MARTÍN MÍGUEZ B, TESTUT L, WÖPPELMANN G. Performance of modern tide gauges: towards mm-level accuracy[J]. Scientia Marina, 2012, 76(S1): 221-228. |
[7] | ALDARIAS A, GOMEZ-ENRI J, LAIZ I, et al. Validation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3809-3821. |
[8] | GÓMEZ-ENRI J, VIGNUDELLI S, CIPOLLINI P, et al. Validation of CryoSat-2 SIRAL sea level data in the eastern continental shelf of the Gulf of Cadiz (Spain)[J]. Advances in Space Research, 2018, 62(6): 1405-1420. |
[9] | ZHOU Boye, WATSON C, LEGRESY B, et al. GNSS/INS-equipped buoys for altimetry validation: lessons learnt and new directions from the bass strait validation facility[J]. Remote Sensing, 2020, 12(18): 3001. |
[10] | BORN G H, PARKE M E, AXELRAD P, et al. Calibration of the TOPEX altimeter using a GPS buoy[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24517-24526. |
[11] | 郭斐, 李佰瀚, 张治宇, 等. 利用GNSS反射信号监测海面高度变化:基于法国BRST站2019—2021年数据[J]. 地球科学与环境学报, 2023, 45(3): 548-558. |
GUO Fei, LI Baihan, ZHANG Zhiyu, et al. Change of sea surface height monitored by GNSS reflected signals—based on data from BRST station in France from 2019 to 2021[J]. Journal of Earth Sciences and Environment, 2023, 45(3): 548-558. | |
[12] |
王笑蕾, 何秀凤, 陈殊, 等. 地基GNSS-IR风速反演原理及方法初探[J]. 测绘学报, 2021, 50(10): 1298-1307. DOI:.
doi: 10.11947/j.AGCS.2021,20200586 |
WANG Xiaolei, HE Xiufeng, CHEN Shu, et al. Preliminary study on theory and method of ground-based GNSS-IR wind speed[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1298-1307. DOI:.
doi: 10.11947/j.AGCS.2021,20200586 |
|
[13] |
边少锋, 周威, 刘立龙, 等. 小波变换与滑动窗口相结合的GNSS-IR雪深估测模型[J]. 测绘学报, 2020, 49(9): 1179-1188. DOI:.
doi: 10.11947/j.AGCS.2020.20200268 |
BIAN Shaofeng, ZHOU Wei, LIU Lilong. et al. GNSS-IR model of snow depth estimation combining wavelet transform with sliding window[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1179-1188. DOI:.
doi: 10.11947/j.AGCS.2020.20200268 |
|
[14] | 郭斐, 陈惟杰, 朱逸凡, 等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2024, 49(5): 715-721. |
GUO Fei, CHEN Weijie, ZHU Yifan, et al. A GNSS-IR soil moisture inversion method integrating phase, amplitude and frequency[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 715-721. | |
[15] | LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204. |
[16] | LARSON K M, RAY R D, WILLIAMS S D P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307. |
[17] | WANG Xiaolei, HE Xiufeng, ZHANG Qin. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J]. Remote Sensing of Environment, 2019, 231: 111229. |
[18] | NIEVINSKI F G, LARSON K M. Inverse modeling of GPS multipath for snow depth estimation—part I: formulation and simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6555-6563. |
[19] | NIEVINSKI F G, LARSON K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS Solutions, 2014, 18(2): 309-322. |
[20] | STRANDBERG J, HOBIGER T, HAAS R. Inverse modelling of GNSS multipath for sea level measurements -initial results[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016. |
[21] | PURNELL D, GOMEZ N, CHAN N H, et al. Quantifying the uncertainty in ground-based GNSS-reflectometry sea level measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4419-4428. |
[22] | PURNELL D J, GOMEZ N, MINARIK W, et al. Precise water level measurements using low-cost GNSS antenna arrays[J]. Earth Surface Dynamics, 2021, 9(3): 673-685. |
[23] | STRANDBERG J, HOBIGER T, HAAS R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data[J]. GPS Solutions, 2019, 23(3): 61. |
[24] | GEREMIA-NIEVINSKI F, HOBIGER T, HAAS R, et al. SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign[J]. Journal of Geodesy, 2020, 94(8): 70. |
[25] | LÖFGREN J S, HAAS R, SCHERNECK H G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world[J]. Journal of Geodynamics, 2014, 80: 66-80. |
[26] | TABIBI S, GEREMIA-NIEVINSKI F, FRANCIS O, et al. Tidal analysis of GNSS reflectometry applied for coastal sea level sensing in Antarctica and Greenland[J]. Remote Sensing of Environment, 2020, 248: 111959. |
[27] | GRAVALON T, SEOANE L, RAMILLIEN G, et al. Determination of weather-induced short-term sea level variations by GNSS reflectometry[J]. Remote Sensing of Environment, 2022, 279: 113090. |
[28] | PENG Dongju, LIN Y N, LEE J C, et al. Multi-constellation GNSS interferometric reflectometry for tidal analysis: mitigations for K1 and K2 biases due to GPS geometrical errors[J]. Journal of Geodesy, 2024, 98(1): 5. |
[29] |
何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178. DOI:.
doi: 10.11947/j.AGCS.2020.20200228 |
HE Xiufeng, WANG Jie, WANG Xiaolei, et al. Retrieval of coastal typhoon storm surge using multi-GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178. DOI:.
doi: 10.11947/j.AGCS.2020.20200228 |
|
[30] | YEH R, NASHED Y S G, PETERKA T, et al. Fast automatic knot placement method for accurate B-spline curve fitting[J]. Computer-Aided Design, 2020, 128: 102905. |
[31] | MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. |
[32] | 覃雪冰. 改进的Levenberg-Marquardt方法及其应用[D]. 南宁: 南宁师范大学, 2022. |
QIN Xuebing. Improved Levenberg-Marquardt method and its application[D]. Nanning: Nanning Normal University, 2022. | |
[33] | 方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986. |
FANG Guohong, ZHENG Wenzhen, CHEN Zongyong, et al. Analysis and prediction of tides and tidal currents[M]. Beijing: Ocean Press, 1986. | |
[34] | ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS Solutions, 2018, 22(3): 80. |
[35] | WANG Xiaolei, HE Xiufeng, XIAO Ruya, et al. Millimeter to centimeter scale precision water-level monitoring using GNSS reflectometry: application to the south-to-north water diversion project, China[J]. Remote Sensing of Environment, 2021, 265: 112645. |
[36] | CHEN Lingqiu, CHAI Hongzhou, ZHENG Naiquan, et al. Feasibility and performance evaluation of low-cost GNSS devices for sea level measurement based on GNSS-IR[J]. Advances in Space Research, 2023, 72(11): 4651-4662. |
[37] | MIGUEZ B M, TESTUT L, WÖPPELMANN G. The Van de Casteele test revisited: an efficient approach to tide gauge error characterization[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(7): 1238-1244. |
[38] |
王笑蕾, 何秀凤, 宋敏峰, 等. 多模多频GNSS-IR水位反演中的频间偏差分析及改正[J]. 测绘学报, 2022, 51(11): 2328-2338. DOI..
doi: 10.11947/j AGCS.2022.20210461 |
WANG Xiaolei, HE Xiufeng, SONG Minfeng, et al. Analysis of inter-frequency bias in multi-mode multi-frequency GNSS-IR water level retrieval and correction method[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2328-2338. DOI..
doi: 10.11947/j AGCS.2022.20210461 |
|
[39] |
王笑蕾, 牛紫瑾, 何秀凤, 等. 沿海沉降变化GNSS定位及GNSS-IR组合监测[J]. 测绘学报, 2023, 52(1): 32-40. DOI:.
doi: 10.11947/j.AGCS.2023.20210414 |
WANG Xiaolei, NIU Zijin, HE Xiufeng, et al. Monitoring of coastal sedimentation changes based on GNSS and GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 32-40. DOI:.
doi: 10.11947/j.AGCS.2023.20210414 |
|
[40] | MATVIICHUK B, KING M, WATSON C. Estimating ocean tide loading displacements with GPS and GLONASS[J]. Solid Earth, 2020, 11(5): 1849-1863. |
[1] | WANG Xiaolei, NAN Yang, HE Xiufeng, SONG Minfeng. GNSS-IR retrieval method with consideration of tidal periodicity of sea level [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 482-492. |
[2] | HE Jiaxing, ZHENG Nanshan, DING Rui, ZHANG Kefei, CHEN Tianyue. A GNSS-IR soil moisture inversion method based on the convolutional neural network optimized by particle swarm optimization [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1286-1297. |
[3] | WANG Xiaolei, NIU Zijin, HE Xiufeng, LI Runchuan. Monitoring of coastal sedimentation changes based on GNSS and GNSS-IR [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 32-40. |
[4] | WANG Jie, WANG Nazi, XU Tianhe, GAO Fan, HE Yunqiao. Sea level estimation using the combination of GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 201-211. |
[5] | WANG Xiaolei, HE Xiufeng, SONG Minfeng, CHEN Shu, NIU Zijin. Analysis of inter-frequency bias in multi-mode multi-frequency GNSS-IR water level retrieval and correction method [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2328-2338. |
[6] | WANG Xiaolei, HE Xiufeng, CHEN Shu, ZHANG Qin, SONG Minfeng. Preliminary study on theory and method of ground-based GNSS-IR wind speed [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1298-1307. |
[7] | HE Xiufeng, WANG Jie, Wang Xiaolei, SONG Minfeng. Retrieval of coastal typhoon storm surge using multi-GNSS-IR [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||